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Knowledge-based methods are a good alternative to force-field-based methods for the analysis of sites of interaction in 
protein binding cavities. Both the Protein Data Bank (PDB) and the Cambridge Structural Database (CSD) offer a good 
amount of data on non-covalent interactions. Although different from protein-derived data, small-molecule crystal data 
from the CSD are worth looking at as they provide a much more abundant and diverse set of intermolecular contacts. CSD 
data, when properly corrected by use of octanol–water  values, can be used to predict the type of ligand chemical group 
most likely to occupy a given position within a protein binding site. Comparison with observed positions of ligand groups 
shows that the success rates of these predictions vary from 23% to 84%. Often, the group predicted to be most preferred 
at a given position is similar but not identical to the observed ligand group; if these are considered successes, prediction 
success rates range from 71% to 94%. Using PDB data, the corresponding rates are 16% to 79%, and 61% to 96%. 
Specificity of prediction of NH groups is somewhat better when using PDB interaction data, but results of prediction of 
hydrophobic groups seem worse than those obtained with CSD data.

We have analysed the importance of data selection by applying different filters to eliminate unwanted interactions 
from our knowledge-base. The presence of certain types of interactions can be undesirable if they are unrepresentative 
of biological situations (contact to solvent molecules in small-molecule crystal structures, secondary crystallographic 
contacts) or if they are likely to add noise to the data without conveying much new information (long-distance contacts, 
sparsely-populated data sets). The elimination of solvent contacts was found to have no effect on the prediction of ligand 
groups in our test set. Both secondary-contact filtering and noise filtering were found to have a clear beneficial effect on 
predictive ability.

1 Introduction
Understanding the principles of molecular recognition in protein–
ligand complexes is a key issue in drug design, and crystal 
structures are our prime source of information in this field. Phillips 
and coworkers1 elucidated the first enzyme structure, lysozyme, 
in 1965, and the crystallography provided strong leads for its 
mechanism of catalysis. An early example of structure-based 
design was reported by the group of Beddell, Goodford et al. at 
Wellcome Laboratories in the United Kingdom in the early 1970s.2 
Their research focussed on haemoglobin, which was one of the few 
pharmacologically relevant targets for which a crystal structure 
was available at that time. More recently, the development of non-
peptidic human immunodeficiency virus (HIV) protease inhibitors 
has convincingly demonstrated the importance of crystallographic 
data in structure-based drug design.3,4

Currently, there are two major repositories of crystallographic 
data that are relevant to drug design. The Protein Data Bank5,6 (PDB) 
is a source of protein structures, containing both crystallographic 
and NMR entries. The Cambridge Structural Database7 (CSD) 
contains crystal structures of small molecules. Both databases 
provide a rich collection of information on non-bonded contacts. 
Tintelnot and Andrews8 were among the first to suggest that atomic 
environments of small functional groups in binding sites taken 
from the PDB could be used to predict non-bonded protein–ligand 
interactions. Klebe9 used a similar approach to analyse non-bonded 
environments of functional groups in the CSD, using the spatial 
distributions (‘composite crystal fields’) of probe groups to map 
putative interaction sites in protein binding cavities. Such distribu-
tions are compiled in the IsoStar database, a knowledge-base of 
nonbonded interactions10 (vide infra). Other applications that use 

crystallographic data directly for the assessment of molecular inter-
actions are: the de novo design tool LUDI;11,12 HSITE;13 XSITE by 
Laskowski et al.;14 SuperStar15–18 (vide infra); and AQUARIUS.19 
Watson et al.20 use the IsoStar crystallographic knowledge-base of 
non-bonded interactions10 and report a method for finding small-
fragment candidates for bioisosteric replacement. Nissink et al.,18 
Labute21 and Rantanen et al.22 report approaches for parameterising 
the geometries of interaction of non-bonded contacts taken from 
crystal structures. Crystal-structure data are also typically used in 
knowledge-based scoring functions for use in docking programs. Of 
these methods, we only mention DrugScore23 here, as this scoring 
function was also explicitly applied to the prediction of preferential 
binding spots in protein cavities.

Knowledge-based methods typically use dedicated databases, i.e. 
data are compiled specifically for the application. Alternative, non-
knowledge-based methods for analysis of non-bonded interactions 
usually apply energy force-fields that are fitted to represent certain 
observations. Examples of such methods are: HINT;24 GRID;25 and 
MCSS.26,27 A related approach, computational solvent mapping, 
has been proposed recently by Vajda et al. to characterise protein 
binding sites using small solvent molecules.28,29 Fragment-based 
docking approaches30,31 are reminiscent of these methods, although 
they are not explicitly used to map binding sites, but attempt to find 
appropriate small lead structures that fit a binding site directly.

In this paper we discuss the combined use of small-molecule 
crystallographic contact propensities from IsoStar10 and hydro-
phobicity data from octanol–water partitioning coefficients for the 
prediction of protein–ligand interactions. Using hydrophobicity 
data, we propose a method for relating the preferences of polar and 
hydrophobic interactions in the CSD to a solvated reference state 
such that small-molecule data can be used reliably for predicting 
interactions in protein binding sites.

We further investigate the effects of data significance and address 
the influence of data selection on performance by assessing results 
for pruned interaction knowledge-bases. We apply filters that 

† This is one of a number of contributions on the theme of molecular 
informatics, published to coincide with the RSC Symposium “New Horizons 
in Molecular Informatics”, December 7th 2004, Cambridge UK.



D
O

I: 
1

0
.1

0
3

9
/b

4
0

5
2

0
5

f

T h i s  j o u r n a l  i s  ©  T h e  R o y a l  S o c i e t y  o f  C h e m i s t r y  2 0 0 43 2 3 8 O r g .  B i o m o l .  C h e m . ,  2 0 0 4 ,  2 ,  3 2 3 8 – 3 2 4 9

OBC
w

w
w

.rsc.o
rg

/o
b

c

A R T I C L E

O r g .  B i o m o l .  C h e m . ,  2 0 0 4 ,  2 ,  3 2 3 8 – 3 2 4 9 3 2 3 9

crystal structures cannot reflect this equilibrium with a solvent; they 
are usually normalised by application of a reference state other than 
a solvent (see Bruno et al.10).

Influence of reference state and solvent. The propensity of 
interaction for a given probe group (contact group) with a given 
counter-group (central group) as derived from an IsoStar scatterplot 
based on PDB or CSD data equals a partitioning coefficient PE:

                      P
c

c
E PDB CSDE

crystal

reference E

≡ =
[ ]

[ ]
,

,

or                  (2)

Here, [ccrystal] is the “concentration of” contact groups (number of 
groups per volume) forming interactions with the central group in 
PDB protein binding sites or CSD crystal structures, and [creference] 
is the concentration of contact groups in the reference state, i.e. 
whether or not within interaction distance of the central group. 
Thus, the propensity that is calculated can be regarded as indicative 
of the likelihood of a contact group–central group interaction in a 
protein or small-molecule crystal environment E.

There are different ways to determine a reference state, but 
usually they rely on the definition of a state that is random and 
where the interaction that is being investigated is not prevalent. For 
CSD contact data in IsoStar, the reference concentration [creference] 
is determined from a set of crystals that contain both groups 
involved in the interaction we are looking at, either interacting or 
non-interacting.

In order to use small-molecule crystal structure data for the 
purpose of predicting interactions in binding sites, this situation 
has to be corrected. We want to predict interactions taking place 
in an equilibrium state relative to an aqueous solvent, as found 
in a biological situation. In proteins, formation of hydrophobic 
contacts usually causes water to be expelled from the relatively 
apolar binding site into the water environment, and the driving 
force for hydrophobic contacts is entropic to a large extent; on the 
other hand, formation of polar protein–ligand interactions usually 
involves desolvation of protein and ligand, and may be somewhat 
less favourable than in small molecule crystals. Given that small-
molecule crystals are usually grown from relatively apolar solvents, 
we speculate that, although interaction enthalpies are expected to 
be equal for contacts formed in CSD and PDB environments, the 
net entropic contribution of water expulsion from protein cavities 
causes free energies of interaction to be different. As a result, CSD 
structures favour hydrophobic contacts to a lesser degree than do 
protein–ligand complexes, and the predominant driving force for 
formation of a small-molecule crystal lattice will be the formation 
of hydrophilic interactions. In practice, we observe that the relative 
occurrence of polar and hydrophobic interactions does differ in 
protein and small-molecule crystals.15

Calculation of correction factor. Early versions of SuperStar 
correct this skew in importance of interactions by multiplying all 
propensities around hydrophobic residues by a factor of 10.0 when 
CSD-derived maps are calculated using hydrophobic probes. This 
gave acceptable results.15 The factor was defined purely empirically, 
and is applied only to interactions between a predefined set of 
apolar protein side chains and apolar probes. Though reasonably 
effective, this approach is essentially flawed as it does not take into 
account the hydrophobicity of the probe for other probe-to-protein 
combinations. The single correction factor is a compromise that 
attempts to account for all influences.

The hydrophobicity correction that relates the crystallographic 
reference state to a water reference state, implicitly incorporating 
the solvent-expulsion effect (see above), can be derived from a 
hypothetical cycle as depicted in Scheme 1. Step I indicates the 
equilibrium between contact groups in the solvent state and those 
interacting with a central group in the protein environment. It is 
this step we want to quantify. We use octanol–water partitioning 
coefficients32 (log P contributions) for fragments as an estimate of 
the hydrophobicity of a reference state with respect to the water-

eliminate ‘noisy’ interactions, solvent-specific interactions, and 
secondary interactions in crystals, and report on their effect.

2 Computational details
2.1 Calculation of propensities of interaction

By superimposing crystallographically-observed contacts between 
two groups X and Y so that the Y moieties are overlaid, a three-
dimensional scatterplot can be produced showing the experimental 
distribution of X (the “contact” or “probe” group) around an average 
Y (the “central” group). IsoStar10 is a database of such scatterplots 
for many X,Y pairs. Most of the scatterplots are based on contacts 
in CSD structures but a substantial minority are based on protein–
ligand interactions in the PDB. Any scatterplot can be converted to 
a contoured surface showing the density of contact groups around 
the central group. This surface can be put on a meaningful scale 
by dividing the raw densities by the uniform density of contacts 
that would be expected in the scatterplot if the X,Y groups were 
distributed at random in the contributing crystal structures. This 
gives a “propensity” surface.10 By implication, regions of the plot 
with propensity >1 (density greater than the expectation of the uni-
form distribution) correspond to energetically favourable positions 
for the contact group around the central group, and the greater the 
propensity, the more favourable the position is likely to be.

SuperStar15,16 uses IsoStar data to generate knowledge-based 
propensity maps that indicate the likelihood of occurrence of certain 
probe groups in protein binding sites (or around small molecules), 
not unlike the well-known GRID program.25 The program works 
as follows. 1) A target molecule (binding site, small molecule) is 
dissected into its constituent fragments in such a way that each 
fragment corresponds to a central group in the IsoStar database. 
For binding sites, a cavity detection algorithm can be used to 
narrow down the relevant part of the protein prior to analysis. 
Typical fragments are small and comprise, e.g., terminal groups 
like carboxylate, methyl groups, charged amines, or links like 
methylenes and peptides. 2) For a selected probe, scatterplots are 
retrieved from the IsoStar database for the constituent fragments. 
Probe groups can be hydrogen-bonding, like alcohol groups or 
carbonyl groups, but may also be apolar, e.g. aliphatic or aromatic 
CH. Probes correspond to the contact groups found in IsoStar (e.g. 
an alcohol probe relies on IsoStar’s OH contact data). 3) Each 
scatterplot is overlaid on all parts of the binding site that it matches 
and each overlaid scatterplot converted to a propensity surface. 4) 
The separate surfaces (“sub-maps”) are combined to produce an 
overall map for the complete binding site or molecule. In those 
regions where a sub-map overlaps with an adjoining sub-map for 
another nearby fragment, propensities at coinciding points are 
multiplied. 5) For protein maps that are calculated using small-
molecule crystallographic data, a correction is applied (hydro-
phobicity correction) that adjusts the propensities to levels that 
correspond to those observed in macromolecules (vide infra).

The resulting map can be viewed after contouring at suitable 
levels of propensity. SuperStar uses either CSD or PDB interaction 
data for map calculation. For further details of this procedure, we 
refer the reader to Verdonk et al.15 and Bruno et al.10

2.2 Reference state and hydrophobicity correction

Ideally, the propensity P we calculate should be a measure of the 
likelihood that a probe group prefers a certain protein environment 
over the solvent (assumed to be water), and should relate to an 
equilibrium constant K [eqn. (1)]

                                      P K
c
c

protein

water

∝ ≡
[ ]
[ ]

                                 (1)

where [cprotein] is the concentration of a probe in a specific protein 
environment, and [cwater] is the concentration of the probe in the 
solvent. Concentrations here are hypothetical as a probe is an 
average of fragments observed in many similar chemical environ-
ments. Unfortunately, interaction propensities that are derived from 
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apolarity of reference states, approximated hydrophobicity of 
probe and environment fragments), it does give us an appropriate 
functional form for the correction to be applied.

2.3 Improvement of the knowledge-base

The approaches outlined below focus on selection and improve-
ment of the source data. We describe the use of filters to eliminate 
noisy data, and pruning of interactions that are of doubtful 
relevance to biological situations (secondary contacts; solvent 
contacts).

Data significance and restriction of noisy regions. Having 
compiled a set of crystallographic interactions between groups X 
and Y, we can construct from this a map that depicts the propensity 
of X to form an interaction with Y at a given position in space. This 
set of interactions XY can be regarded as a sample from a more 
comprehensive data set that comprises all crystals harbouring 
central group Y and contact X, regardless of an interaction between 
the two. We can estimate the significance of any observation in 
the interaction map from the distribution of such observations in 
the comprehensive set. Assuming a Poisson distribution for the 
observed number of contact groups per cubic Ångstrom in this 
reference set, the chance of finding more or less than n contact 
groups in a small volume at a given position in the map (e.g. a grid 
cube) can be estimated numerically as 

                            p n a
n

n
e

x
n

n

a

≤( )= −

=
∑ expected expected

!0

                     (6a)

                                   p(n ≥ a) = 1 − p(n < a)                            (6b)

Here, nexpected is the expected number of contact groups per 
volume unit, which is known from the comprehensive set.10 The 
assumption of a Poisson distribution comes naturally as the random 
observations in the reference set are spread over a large volume, so 
that the chance of an observation occurring in a given grid cube is 
reasonably small. eqn. (6a) is used for observations smaller than 
nexpected, (6b) for those larger than nexpected. An observation will be 
considered significant if its chance of occurrence p is smaller than 
a certain threshold S. If not, the expected value (corresponding to a 
propensity of 1) will be substituted.

When regarding regions at large distances from the central group, 
it is expected that the value of n, the observed number of observa-
tions per unit volume, levels off towards the nexpected value. This is 
not always observed. One of the reasons may be a lack of data, 
which causes remote regions to be sparsely populated. Another 
reason of a more systemic nature may be that these regions feature 
a low incidence of contacts because packing in small-molecule 
crystals is extremely efficient; as a result of this compressive lattice 
effect, long-distance contacts will hardly ever occur.

solvent state. The log P value of a molecule can be estimated as 
a sum of individual  contributions from its component chemical 
groups.33–35 We assume that these so-called -values are constant 
(i.e. independent of the nature of the molecule). -values as found 
in the literature have been estimated usually for a large number of 
functional groups by regression against a training set of measured 
log P values.

The fragments involved in the hypothetical cycle of Scheme 1 
are the probe group X, with its associated log P contribution X, 
and its environment E, which is either a solvent, the contacting 
group(s) in the small-molecule crystal, or the contacting group(s) 
in the protein. The hydrophobicity of this environment is measured 
by log P contribution E. We first quantify the influence of the 
hydrophobicity of the small-molecule crystal reference state 
relative to water (step II), by treating it as an octanol–water 
partitioning step that is attenuated by a factor h1; effectively, h1 is 
the lipophilicity of the CSD reference state on a scale of 0 (water) to 
1 (octanol). KCSD is estimated by the propensity derived from IsoStar 
CSD data (step III). The difference in hydrophobicity between the 
environment of the XE pair in the crystal and in the protein (step 
IV) is approximated similarly, but in two steps V–VI using water 
as an intermediary solvent. The term h3 − h2 reflects the difference 
in hydrophobicity between the crystal and protein environments of 
the contact, where h2 and h3 are again on a scale of 0 (water) to 1 
(octanol). Combining the factors involved in steps II, III, V, and 
VI we derive eqn. (3)

                              KPDB = 10h1X + (h3 − h2)(X + E)KCSD                         (3)

Defining attenuation coefficient a = h1 for step I and 
b = h3 − h2 for step IV, eqn. (3) can be rewritten with a correction 
factor C as

                                          KPDB = CPCSD                                     (4)

with

                                      C = 10(a + b)X + bE                                                       (5)

The separation of X and E terms in eqn. (5) allows precalculation 
of the probe- and protein (environment)-dependent parts of the 
correction factor. Factor C is applied to the propensity at each grid 
point in a raw propensity map.

Hydrophobicity of probe and environment are estimated by 
contributions X and E. Probe contributions are approximated by 
the contribution of the group alone, e.g. for an aliphatic hydroxyl 
probe, the contribution OH is taken. The environment term can be 
estimated by taking the contribution of the contacting (nearest) 
group only, or by averaging the  terms of n nearest groups up to 
a certain distance. Although the approach depicted in Scheme 1 is 
of an approximate nature due to the estimations used (averaged 

Scheme 1
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This may cause problems in practice for two reasons: first, noise 
may be introduced in such underpopulated areas, and second, the 
presence of very low propensities in the above mentioned regions 
may lead to cancellation of high propensities in areas where they 
overlap with other sub-maps during binding site analysis. We 
therefore limit contributions from XY interaction data to a core 
region within a radius of R < rX + rY + shell Å of the interacting 
group; here, rX and rY denote the van der Waals radii of the 
contacting atoms of the contact and central group, respectively, and 
shell the thickness of the region beyond the sum of the van der Waals 
radii. We extend this core region only to areas beyond R when n is 
significantly larger (i.e. p < S) than nexpected. For other areas outside 
the core region, we assume that there are nexpected observations (i.e. 
corresponding to a propensity value of 1), although in the actual data 
there may be less. The maximum extension distance is currently that 
of the underlying IsoStar data, Rmax = rX + rY + 0.5 Å.

Secondary contacts. An interaction of a contact group X with a 
given group A in the database does not preclude a second contact 
of the group with another moiety B. An example is shown in Fig. 1. 
In the CSD crystal structure shown in Fig. 1, the contact of the 
OH to the phenyl ring is considered to be secondary to the main 
contact, a hydrogen bond to a carbonyl group. If the interaction 
with B is much stronger than the one with A, we should not use the 
latter for modelling XA-type interactions. When trying to predict 
primary, one-on-one interactions between X and A only, including 
such information about an incidental secondary contact is expected 
to be detrimental to predictions. The effect is expected to be more 
important for CSD data than for PDB data, as small-molecule 
crystals are closely packed. In order to remove such contacts from 
the analysis, we filtered IsoStar CSD data, regarding the contact 
group-central group distance as a measure of its strength, and 
eliminated a contact from XA interaction data if

                                        dXB < dXA + filter                                                           (7)

where dXA is the XA distance minus the sum of the van der Waals 
radii of X and A, as determined in the original crystal structure, 
and dXB has an analogous definition. The parameter filter sets the 
strength of the filter, i.e. it determines the threshold distance at 
which we deem contacts to be secondary and hence omit them. 
Filters with negative filter values are less stringent than those with 
positive values for filter.

Solvent contacts. Inclusion of solvents in crystal structures may 
be induced by more than just a primary intermolecular interaction. 
Solvent molecules in crystals typically have at least two of the 
following three different functions: participation in hydrogen-
bonding networks; space-filling, with no pronounced interactions 
between solvent and other molecules; and as ligands completing the 
coordination around metal ions.36

The particular role solvents play in crystal formation may bias 
their interactions. It has been reported that solvent inclusion in 

crystals can result in stronger H-bonds and an increase in favourable 
CH– interactions.37 We investigated this influence by eliminating 
contact data due to solvent molecules from our knowledge-base, 
and assessing predictive performance of SuperStar calculations.

Another reason for excluding solvents from interaction data 
is the bias they may introduce in terms of diversity. An area 
where this is known to play a role is, e.g., that of small-molecule 
chlorine contacts. A majority of these contacts is found to be due 
to interactions with common chlorinated solvents like chloroform, 
dichloromethane and trichloroethane that are used abundantly in 
crystallisation liquors because of their physicochemical properties. 
Such contacts may not be representative of ligand chlorine contacts 
in protein environments. Here, we investigate whether this is also 
the case for common solvent inclusions like acetone or ethanol.

3 Results and discussion
3.1 Evaluation of -based hydrophobicity correction 
mechanism

Success rates of prediction for a set of map probes are given in 
Table 1 (see section 5.1 for validation procedure). Rates are given 
for prediction by the correct probe (f) or by appropriate probes with 
similar properties (f ′). Results are shown for SuperStar using PDB-
based interaction data (PDB), applying raw small-molecule crystallo-
graphic data (CSD, no correction), CSD data in combination with 
the original single-factor hydrophobicity correction mechanism15 
(CSD original), and CSD data with the -based protocol (-based). 
Results for the latter are shown for two estimates of the E term: by 
regarding the closest protein–ligand contact within van der Waals 
distance + 0.5 Å only, i.e. distance < rprobe + rproteincontact + 0.5 Å (rprobe 
and rproteincontact are van der Waals radii of the contacting atoms) (CSD 
-based single), and by averaging the E contributions of up to three 
nearest protein groups within distance rprobe + rproteincontact + 0.5 Å 
(CSD -based extended).

Errors were estimated using a bootstrapping approach: success 
rates of prediction were calculated for 100 ‘random sets’ equal in 
size to the original set of entries. These sets were compiled randomly 

Fig. 1 Schematic depiction of a secondary contact (left), and an example 
of a secondary contact in crystal structure RUWMAX (right) (M. Bolte, 
Acta Crystallogr., Sect. C, 1997, 53, 9700028), where the primary contact is 
a hydrogen bond between the OH contact group and the carbonyl.

Table 1 Success rates (%) for different hydrophobicity correction protocols. f percentage of ligand groups predicted by correct probe; f ′ percentage of 
predictions by probe with appropriate physicochemical properties. shell = 0.0 Å for contacts to apolar groups, shell = 0.5 Å for polar groups. The error was 
derived using a bootstrapping procedure: for 100 ‘bootstrapped’ validations of entries that were picked randomly with replacement from the original set of 
entries, success rates were analysed. Only one set of error results is shown as errors proved to be similar for different validation runs

 Aliphatic CH Aromatic CH CO  OH  RNH2  RR′NH

n groups 468  224  176  96  29  74
Error estimate 2  3  4  4  5  4
 f f ′ f f ′ f f ′ f f ′ f f ′ f f ′
PDB 60 66 16 72 61 61 65 96 79 86 76 87
CSD, no correction 4 17 7 9 88 88 81 100 7 100 38 88
CSD, original 10 71 81 86 78 78 81 96 7 86 18 71
CSD, -based, single 18 81 75 80 85 85 70 97 17 72 41 71
CSD, -based, extended 18 80 75 80 85 85 69 97 17 72 41 71
CSD, -based/shell 23 84 78 83 84 84 64 94 35 76 53 71
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from entries of the original set (allowing replacement). The variance 
of the bootstrapped results is indicative of the uncertainty in the 
success rates. Only one set of errors is reported, as results were 
similar for validation runs that employ different settings.

Ligand group prediction, no hydrophobicity correction. 
Using raw CSD data without applying the hydrophobicity correc-
tion clearly has a detrimental effect on prediction of hydrophobic 
ligand fragments like aromatic CH and aliphatic CH (Table 1, CSD, 
no correction). This is the result of the difference in importance of 
specific types of interaction observed for contacts in the CSD and 
PDB. Assessment of hydrophilic ligand groups is more successful 
with CSD interaction data than with PDB-based data, but in this 
uncorrected case this may just be the result of over-emphasising 
these types of interaction. The amino ligand fragments are generally 
predicted to be OH rather than NH. This does not mean that NH-
containing groups do not occur in positions predicted to be favour-
able for the uncharged-NH probe; it does indicate that propensities 
found for the OH maps at these ligand positions are higher than 
those for the NH probe.

Ligand group prediction, original scheme vs. -based 
protocol. Application of the single correction factor protocol 
(Table 1, CSD original) improves prediction of hydrophobic 
aliphatic and aromatic CH moieties by CSD interaction data 
considerably, while losing some of the performance for hydrophilic 
groups. Prediction rates for CO and OH ligand groups are better 
than those obtained from PDB-based interaction data; prediction of 
the NH-containing ligand fragments (RNH2, RR′NH) is less good, 
although most are predicted when taking into account prediction by 
the OH probe, as indicated by the high f ′ rates. This is acceptable 
since the OH probe has donor properties, as has uncharged NH, and 
the former is generally the better donor of the two.

For the -based correction protocol, values for  contributions 
were estimated from log P contributions from the literature.33,34 
These were checked for consistency against experimental values 
of octanol–water partitioning coefficients for small compounds 
where available, and adjusted to match protein fragments reason-
ably (Tables 2 and 3). Parameters were not optimised to yield the 
best validation results possible, with the exception of the value 
for NH; slightly better results were obtained with a value of −0.3 
rather than −0.5. A value of −0.5 would apply to strong NH donor 
groups (c.f. OH = −0.9), whereas NH-containing ligand groups 
often correspond to somewhat weaker donors. Setting the NH 
contribution to −0.3 yields satisfactory results and this value was 
used throughout.

With this set of -contribution parameters for the probes 
(Table 2), the -based correction protocol (Scheme 1) yields 
validation results as shown in Table 1. Optimal results were 
obtained for a = 0.4 and b = 0.2 [eqn. (5)]. Being on a scale 
from 0 (water) to 1 (octanol) these values are quite reasonable, with 
a indicating that the average crystal environment has an apolarity 
of 0.4 times that of octanol; the b value indicates that protein 
environments surrounding ligands are about 0.2 units more apolar 
than small-molecule crystal environments. The values a = 0.4 

and b = 0.2 have been used throughout. Validation results for the 
-based scheme indicate a slight improvement in the prediction 
of aliphatic CH ligand groups, and a definite improvement in 
prediction of carbonyl groups and NH moieties by their correspond-
ing map probes. Although the correct prediction of hydroxyl groups 
by the OH probe is down, its prediction by appropriate probes (i.e. 
OH, CO, or NH) is similar to that found for the original protocol.

Prediction of ligand hydroxyl groups is complicated because a 
given hydroxyl might be a donor only (in which case its prediction 
as an NH is a reasonable result), an acceptor only (when prediction 
as CO would be reasonable) or both a donor and an acceptor (in 
which case its prediction as either NH or CO would be unsatis-
factory). Looking at this in more detail, maps calculated with the 
original hydrophobicity correction predict both donating-only, 
and donating-and-accepting ligand hydroxyl groups as OH nearly 
exclusively (Table 4). Using the -based hydrophobicity correction, 
stronger competition is introduced between NH, CO, and OH map 
probes, which is not unexpected. Ligand hydroxyl groups that both 
donate and accept seem to be predicted wrongly as NH slightly less 
often than groups that donate only. From a subset of 33 buried OH 
groups in positions that favour a donor group only, 27 are predicted 
as OH, 1 as carbonyl, and 5 as uncharged NH (15%); for a set of 49 
hydroxyl groups in positions with both donors and acceptors within 
contact distance, 37 are predicted correctly as OH, another 7 are 
predicted to be carbonyls, and 5 to be NH groups (10%). All OH 
groups from a set of five buried ligand hydroxyls in positions that 
would favour an acceptor are predicted to be carbonyls.

Fig. 2 shows example SuperStar maps for lytic transglycosylase 
binding bulgecin A (PDB code 1D0L). This type of protein 
catalyses the cleavage of a glycosidic bond in peptidoglycan, but its 
precise functions in peptidoglycan metabolism is unknown.38 The 
binding site is quite polar and a comparison of maps calculated with 
uncharged NH and aromatic CH map probes shows that, in particular, 
the aromatic CH maps are much more according to expectation for 
the -based protocol than for the original hydrophobicity correction 
method. The sparser NH maps seem to compare better to the PDB-
based maps than the maps calculated using the original correction 
scheme. The additional hot-spot in the top left-hand corner in 
the plots based on CSD data is the result of small-molecule data 
showing an interaction preference for an NH probe to both lone 
pairs of the Gln98 terminal carbamoyl CO group, whereas PDB data 
do not display this preference. It is unclear whether the absence of 
this spot in a PDB-data-based map is genuine, or caused by a lack 
of or bias in protein–ligand interaction data.

Map descriptors, original vs. -based correction. Apart from 
prediction of ligand groups by their corresponding map probes, 
other factors of interest are the extent to which a map contains 
points with high propensity values, and whether the ligand groups 
examined in the validation actually fall within regions of high 
propensity (‘hot spots’). Table 5 lists the map descriptors fP > 1 and 
fP < P′. The former, fP > 1, represents the percentage of ligand groups 
observed to lie at positions for which the map indicates a propensity 
larger than 1.0, calculated per map probe for the appropriate ligand 
groups. Propensities larger than 1.0 indicate a likelihood of 
occurrence that exceeds random expectation. The latter, fP < P′, is the 
(probe-accessible) fraction of a map with propensities smaller than 
the propensity found at the ligand group’s position (averaged over 
all ligand groups, per map probe). High values for this descriptor 
indicate that the ligand groups occur in ‘hot-spots’ in the map. 
Ideally, both descriptors should have high values, but it is not 
known how high these values should be. Although ligand place-
ment in binding sites usually can be considered optimal, ligands 
exhibit a broad range of binding affinities, and the local positioning 
of a functional group in the ligand with respect to its environment 
may be sub-optimal.

A comparison of values for the original and -based hydro-
phobicity correction methods shows that the latter yields comparable 
values for fP < P′, but lower ones for fP > 1. This is an indication that 
maps for the -based mechanism feature less and/or smaller regions 

Table 2  contributions assumed for SuperStar map probes

Probe name 

Aliphatic CH carbon +0.5
Aromatic CH carbon +0.5
Carbonyl oxygen −0.4
Alcohol oxygen −0.9
Uncharged nitrogen −0.3
Methyl carbon 0.5
Organic chlorine 0.9
Organic fluorine 0.5
Charged RNH3 nitrogen −1.5
Carboxylate oxygen −2.0
Nitro oxygen 0.2
Sulfur 0.5
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Table 4 Competitive prediction of buried ligand hydroxyl groups that only donate, donate and accept, or only accept (numbers given in brackets). Maps were 
calculated for all probes as before (ARCH aromatic CH probe; ALCH aliphatic CH probe)

Predicted as: OH CO NH ARCH ALCH

Donating ligand OH groups (33)
original hydrophobicity correction 32 0 1 0 0
-based hydrophobicity correction 27 1 5 0 0
-based/shell 21 1 8 3 0
-based/filter 24 2 6 1 0
-based/filter/shell 23 2 6 2 0
Donating & accepting ligand OH groups (49)
original hydrophobicity correction 42 5 2 0 0
-based hydrophobicity correction 37 7 5 0 0
-based/shell 37 7 5 0 0
-based/filter 41 6 2 0 0
-based/filter/shell 41 6 2 0 0
Accepting ligand OH groups (5)
original hydrophobicity correction 0 5 0 0 0
-based hydrophobicity correction 0 5 0 0 0
-based/shell 0 5 0 0 0
-based/filter 0 5 0 0 0
-based/filter/shell 0 5 0 0 0

Table 3 Estimated log P contributions for protein fragments. Fragment contributions as stated by Klopman (a) and Suzuki (b) are shown for comparison. 
Experimental values for related compounds were used for checking whether values were appropriate and consistent. Contributions here are for generic frag-
ments, and generally follow the trend of the values given by Klopman

Protein fragment  Source

Carbamoyl −0.7 NH2-CO −0.24b, −0.795a; N-methylacetamide −1.05; N-methylformamide −0.97
Methyl 0.7 CH3-Cal 0.764b, 0.661a; CH3-Car0.614 (S); ethane 1.81; 2-methylpropane 2.36; 2,2-dimethylpropane 3.11
Methylene 0.5 CH2-C2 0.897b, 0.415a; CH2-Car-C 0.369 (S); propane 2.36; diethyl ether 0.89; diethylamine 0.58
Tertiary CH 0.4 CH-(C)3 0.233b, 0.104a; 2-methyl-propane 2.76
Phenyl 0.7 CarH-(Car)2 0.367b; CarH-(Nar)20.863b; benzene 2.13; p-cresol 1.94 (assume that contacts ‘see’ one-third of phenyl ring)
Aromatic CH 0.6 CarH-(Car)2 0.367b 0.380a; CarH-(Nar)2 0.863b; CarH-(Car)-(Nar)
Histidine 0.0 0.367b; benzene 2.13; p-cresol 1.94 (assume that contacts ‘see’ one-third of a ring)
Aromatic CH
Aromatic CC or CX 0.5 Car < 0.129a; set as methylene
al-al ether 0.0 O-(C)2 −1.093b; −0.402a O-(C)-(CO) −0.093b; diethyl ether 0.89; methylethylether 0.56
al-ar ether −0.1
Ester −0.5 O-(C)-(CO) −0.062b, −0.414a; methylformate 0.03; benzyl methyl ester 2.12; methyl acetate 0.18; ethyl acetate 0.73
Ketone −0.2 CO-(C)2 −1.747b, −0.493a; acetone −0.24; 2 butanone 0.29
Carboxylate −1.0 CO-(C)-O −1.357b; charged fragment.
Carboxylic acid −0.4 acetic acid −0.17b −0.263a (aliphatic) 0.467a (aromatic); propanoic acid 0.33; benzoic acid 1.87
Planar ring NH −0.3 NH-Car-N −0.615b; NH (Car)2 −0.720b −0.160a; pyridine 0.65; pyrrole 0.75
(uncharged)
Planar ring NH −0.5
(charged)
Guanidinio −0.8 charged group, estimated
Charged amino −1.0 charged group, estimated
Aliphatic OH −0.7 OH-Cal −1.287b, −0.681a (primary) −0.575a (secondary); methanol −0.77; ethanol −0.31
Aromatic OH −0.4 OH-Car −1.102b, 0.135a; phenol 1.46
Thiol 0.9 SH-C 0.052b 0.875a

Amide −0.8 NH-C-CO −0.060b −1.006a; N-methylformamide −0.97; N-methyl acetamide −1.05
Disulfide link 0.5 S-X 0.079b; -S- 0.485a; dimethyldisulfide 1.77; diethyldisulfide 1.95
Water −1.4 water 1.38b

a Ref. 40. b Ref. 33. Cal aliphatic CH; Car aromatic CH. Experimental octanol–water partitioning coefficients were obtained from: http://www.syrres.com/esc/
kowdemo.htm.

of high propensity. Figs. 2 and 3 both show example SuperStar maps 
for a selection of map probes. A comparison of corresponding maps 
for CSD original and -based protocols clearly shows that the latter 
are much more sparse. In Fig. 3 (1AOE binding site of quinazoline 
derivative) it is interesting to note that although PDB maps point out 
the ligand quinazoline NH and NH2 groups that bind Glu32, CSD 
original and -corrected maps for the uncharged NH probe do not. 
Maps for OH do point out the appropriate regions in all cases.

Descriptor values for hydrogen-bonding OH and CO ligand 
moieties are somewhat higher than those for hydrophobic ligand 
groups; CSD data tend to yield more favourable fP > 1 values for 
aromatic CH than PDB data do. fP < P′ values are relatively low for 
hydrophobic probes due to the nature of the maps: these are usually 
quite disperse and devoid of strong features. Maps for hydrogen-
bonding probes like OH or CO tend to display localised areas of 

high favourability (‘hot-spots’), and this is expressed in the fP < P′ 
values of around 80%, indicating that hydrogen-bonding ligand 
groups are, on average, found in quite specific areas of high likeli-
hood that make up only about 20% of the map.

Map descriptors, distance-limited -based correction. Intro-
duction of a distance-limitation shell = 0.0 Å for contacts to apolar 
central groups increases fP > 1, which points out that more ligand 
groups are now in favoured regions with propensities larger than 
1; values for fP < P′ are very similar, indicating that maps are similar 
in shape to those that do not include the correction (Table 5). 
Introduction of a distance limitation for contacts to polar central 
groups was found to have a less beneficial effect, so this was not 
applied. Table 1 (CSD, -based/shell) shows application of the 
distance restriction to be favourable for the prediction of apolar 
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Fig. 2 SuperStar maps for PDB entry 1D0L (E. J. van Asselt, K. H. Kalk and B. W. Dijkstra, Biochemistry, 2000, 39, 1924–1934); waters have been omit-
ted from map calculation. Maps are shown for probes uncharged NH (right) and aromatic CH (left), corrected with the original hydrophobicity adjustment, 
the -based protocol, and the -based protocol with shell-correction. Maps calculated from PDB data are shown for comparison at the bottom. Propensities 
contoured at levels: 2 (blue); 4 (red); 8 (yellow).

ligand groups by either correct or appropriate probes. A strong 
improvement is observed for prediction of ligand NH groups by 
the correct uncharged NH map probe. This unexpectedly large 
influence of shell on the prediction of NH groups is likely to be 

the result of these groups being planar, and therefore often sitting 
in tight cavities. It is in such cavities that the influence of distant, 
noisy regions is most noted, as the likelihood of sub-map regions 
overlapping is high in such narrow binding sites. This can also be 
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limitation correction and the secondary contact filter tend to 
eliminate contact groups that form long-distance interactions and do 
not contribute useful information. Fig. 3 shows that both secondary 
contact filtering and shell correction have a similar influence on NH 
maps. Small differences are observed for competitive prediction of 
OH groups (Table 4).

Application of a secondary-contact filter in addition to the shell 
restriction has minor effects. The fP > 1 and fP < P′ fractions are seen to 
increase for donor map probes (OH, RNH2, RR′NH, Table 5), but 
success rates are only affected marginally (Table 6). The effect is 
observed for both polar and apolar ligand groups. Map descriptors 
and success rates suggest that a combination of filtering and distance-
limitation correction yields optimal results for a filter value of −0.1.

3.3 Solvent bias filtering

Solvent interactions were eliminated and results for such a filter 
are shown in Table 6 (SBF). It is clear from these data that solvent 
effects have no major influence on accuracy of prediction of ligand 
groups. We therefore conclude that solvent interactions in small-
molecule crystal structures are not distinguishable from interactions 
between other groups with similar functionality when assessing 
strongly interacting groups like OH, CO, and NH.

3.4 Examples of prediction of ligand groups

Aromatic CH probe maps shown for the relatively polar bulgecin 
A binding site (PDB code 1D0L) in Fig. 2 show that the original 
scheme for hydrophobicity correction of CSD data tends to over-
emphasise binding of hydrophobic probes. The reason that this does 
not have a strongly detrimental effect on success rates of prediction 
is that, usually, maps for polar and apolar probe groups occupy 
different regions in space, and hence do not compete when it comes 
to prediction of ligand groups. The PDB-based map for aromatic 
CH groups is empty at these contouring levels, indicating a low 
predicted preference for aromatic interactions. The original scheme 
can be seen to yield NH-probe maps that have larger regions of high 
propensity than the maps calculated with the -based correction or 
from PDB data, i.e. the original scheme does not adjust the strength 
of polar interactions to the level observed in protein data.

Fig. 3 (dihydrofolate reductase binding site, PDB code 1AOE) 
allows a comparison of maps for different probes calculated with 
different protocols (original, -corrected, -corrected/shell, and 
-corrected/filter). Contour maps are shown for aromatic CH, 
carbonyl, hydroxyl, and uncharged NH probes. Comparing PDB-
based and original CSD maps, one can see that high-propensity 
regions in PDB maps are relatively sparse. This may be a result 
of interaction data derived from protein binding sites being more 
relevant, but could equally well be a result of a lack of diversity 
in the PDB data that are available. A comparison of original CSD 
maps and -corrected ones shows that the latter suppress some 
regions that are featured strongly in the original maps. Given that 

observed in Fig. 3. A comparison of NH maps for CSD, -corrected/
shell and CSD, -corrected calculations shows that the former now 
does point out the quinazoline ring NH and NH2 groups that bind 
to protein residue Glu32. This protein cavity (PDB code 1AOE) 
is a typical example of a narrow binding site that accommodates a 
planar nitrogen heterocycle compound.

Focusing on competition between NH and OH map probes when 
predicting ligand OH groups (Table 4), we see that a larger propor-
tion of donating-only ligand OH groups is predicted by NH probe 
with shell correction than for the -based protocol only: only 5 out 
of 49 (10%) of donating-and-accepting OH groups are predicted as 
NH (another 7 are predicted by the carbonyl probe), whereas 8 out 
of 33 donating-only OH groups (24%) are predicted as NH (another 
1 is predicted as CO, and 3 are predicted as aliphatic CH). In such 
cases a pure donor may indeed be more appropriate.

3.2 Elimination of secondary contacts

Fig. 4 shows original and filtered IsoStar scatterplots of hydroxyl 
groups around phenyl for two different filter settings. Filtering 
removes those contacts that have no strong interaction with the ring. 
What remains is a strip of contact groups in the plane of the ring for 
the highest settings of filter. At first glance, one might expect that 
removal of contacts deteriorates statistics for the resulting plots but 
a large number of the discarded contacts are incidental occurrences 
and probably just add noise. Filtering tends to remove distant 
contacts that add density at the very fringe of favourable regions 
in the contour plots, decreasing ambiguity in those cases where 
sub-maps overlap.

Filtering of secondary contacts is not expected to be beneficial for 
all cases where we observe differences between CSD and PDB data. 
Although the multitude of interaction geometries found in CSD and 
PDB are the same, differences are found in the ratio of occurrence 
for a small number of contact pairs.17 As an example, Fig. 5 shows 
OH contact data for amide linkages. PDB data favour formation 
of amide NH hydrogen bonds over amide CO ones, whereas CSD 
interactions prefer contacts to either acceptor or donor. It is not clear 
why this difference arises; it may be a genuine effect, but might 
equally be the result of a much higher diversity of contacts observed 
in CSD data. Fig. 5 (extreme right) shows the effect of secondary 
contact filtering in this case: non-relevant, remote contact groups 
are removed.

SuperStar validation results for different types of filters (Table 6) 
indicate that a combination of -based hydrophobicity correction 
and removal of secondary contacts benefits accuracy of donor group 
prediction. Both prediction of groups by correct and by appropriate 
probes is seen to increase for RNH2 groups. Smaller improvements 
are observed for the prediction of RR′NH ligand groups. The 
same trend is observed both with and without application of the 
shell correction. Overall, results for the application of a secondary 
contact filter are not dissimilar from those for application of a 
distance limit shell. This is not unexpected, since both the distance 

Table 5 Map descriptors fP > 1 and fP < P′ describing propensities at ligand group positions. H.C. hydrophobicity correction method. fP > 1 average percentage 
of ligand groups observed to lie at positions with propensity >1.0; fP < P′ percentage of map with propensities smaller than the propensity found at the ligand 
group position

    Ligand groups

    Aliphatic  Aromatic        
    CH  CH  CO  OH  RR′NH  RNH2
Source H.C. filter fP > 1 fP < P′ fP > 1 fP < P′ fP > 1 fP < P′ fP > 1 fP < P′ fP > 1 fP < P′ fP > 1 fP < P′

PDB n.a. — 62 71 26 19 71 85 79 82 89 74 90 86
CSD original — 52 57 86 63 84 86 82 82 53 65 35 48
CSD -based — 31 53 71 55 78 87 53 80 35 63 10 42
CSD -based/shell — 64 56 77 55 77 86 51 80 41 64 41 57
CSD -based  = −0.3 37 52 79 53 84 87 68 84 59 71 52 63
CSD -based  = −0.1 40 48 80 53 85 87 66 83 59 70 59 67
CSD -based  = +0.1 53 50 82 50 82 86 65 82 47 58 52 56
CSD -based/shell  = −0.3 69 55 82 54 84 87 68 84 59 71 55 64
CSD -based/shell  = −0.1 71 51 83 54 85 87 66 83 59 70 59 67
CSD -based/shell  = +0.1 78 51 83 50 82 86 65 82 47 58 52 58
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Fig. 3 Example maps calculated for a dihydrofolate reductase binding site (1AOE; M. Whitlow, A. J. Howard, D. Stewart, K. D. Hardman, L. F. Kuyper, 
D. P. Baccanari, M. E. Fling and R. L. Tansik, J. Biol. Chem., 1997, 272, 30289–30298). The quinazoline ligand is shown in green. CSD results are shown for 
the original hydrophobicity correction scheme, for the -based scheme, for the -based scheme using data filtered for secondary contacts (filter = −0.1), and 
for the -based scheme using a reduced interaction shell (shell). ARCH aromatic CH probe; CO carbonyl probe; OH hydroxyl probe; NH uncharged NH probe. 
Propensity contours: 1 (blue); 2 (red); 4 (yellow). Results calculated with PDB interaction data are shown for comparison.

validation results are similar for both, one can assume that the 
suppressed regions are indeed of lesser interest. Comparing the 
-corrected-maps to the -corrected/filtered and -corrected/shell 
contours, changes can be observed for the polar probes, most nota-
bly in the maps for the NH probe.

4 Conclusions
In this paper we describe the selection and processing of informa-
tion on intermolecular interactions from crystal structure data for 
use in knowledge-based methods, and the effect of using such 

data for the prediction of interactions in protein binding sites. In 
particular, we explore the use of small-molecule interaction data for 
the prediction of protein–ligand interactions in protein binding sites. 
All calculations were performed with SuperStar, an application that 
generates propensity maps that indicate the likelihood of occurrence 
of certain probe groups in binding sites.

We implemented a new, improved hydrophobicity correction 
mechanism that renders CSD data suitable for use in predicting 
protein–ligand interactions, correcting the reference state to an 
aqueous-like environment. The protocol uses octanol–water 
partitioning coefficients to estimate the hydrophobicity of binding 
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Table 6 SuperStar success rates for the prediction of ligand groups (-based hydrophobicity correction protocol) using filtered IsoStar data, both without 
and with shell correction (shell = 0.0 Å for contacts to apolar central groups). Results for unfiltered data have been inserted for comparison. filter: secondary-
contact filter with given delta value; SBF: solvent bias filter. f percentage of ligand groups predicted by correct probe; f ′ percentage of predictions by probe 
with appropriate physicochemical properties

 Aliphatic CH Aromatic CH CO  OH  RNH2  RR′NH

ngroups 468  224  176  96  29  74
Filter f f ′ f f ′ f f ′ f f ′ f f ′ f f ′
Without shell correction
none 18 81 75 80 85 85 70 97 17 72 41 71
 filter = −0.3 17 79 67 73 86 86 75 94 38 90 47 65
 filter = −0.1 18 79 66 71 86 86 69 94 45 90 53 65
 filter = +0.1 22 84 74 83 84 84 64 92 38 79 47 53
SBF 17 82 76 80 85 85 69 95 17 72 41 65
With shell correction (contacts to apolar groups, shell = 0.0 Å)
none 23 84 78 83 84 84 64 94 35 76 53 71
 filter = −0.3 23 81 67 77 85 85 73 93 41 90 53 65
 filter = −0.1 27 81 64 75 86 86 68 91 45 90 53 65
 filter = +0.1 28 86 70 86 84 84 64 91 38 79 47 53
SBF 17 82 76 80 85 85 69 95 17 72 41 65

Fig. 4 Results of secondary-contact filtering of OH contacts about a phenyl ring for different settings of filter. Data are taken from the CSD.

Fig. 5 Scatterplots and corresponding contour maps for OH contacts surrounding a peptide link. From left to right: contacts from the PDB; contacts from the 
CSD, filtered for secondary contacts (filter = −0.1); CSD contacts discarded by the filter. Propensity contours at 1 (red) and 4 (white).

site environments and probes, and uses this information to adjust 
small-molecule based propensity data to values that apply to 
protein-type environments.

Improvements were observed for prediction of ligand groups in 
protein binding sites when irrelevant contacts in ‘noisy’ regions 
were eliminated from the knowledge-base. Two approaches were 
shown to be effective in eliminating contacts that do not convey 

information. Secondary-contact filtering removes those interactions 
from the knowledge-base that are incidental to a second, stronger 
interaction. A second approach eliminates all remote regions 
beyond a given distance threshold if lacking a number of observa-
tions significantly larger than the amount expected at random. Both 
approaches show favourable influences on predictions of ligand 
groups by corresponding map probes. Most notably, ligand-NH 
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group prediction by the uncharged NH map probe is observed to rise 
from 7% (original map calculation) to approximately 35% (RNH2 
groups), and from 18% to up to 53% (RRNH groups, including 
ring-NH). Such groups typically sit in narrow binding sites and 
can be difficult to predict correctly. The accuracy of prediction of 
these groups by either OH or NH probes, which both indicate donor 
groups, is about 70% whether or not filters are applied, so the filter-
ing approaches increase the specificity of the map probe. This is 
also observed for ligand hydroxyl groups, where a larger amount of 
hydroxyls that both donate and accept are predicted correctly by the 
OH map probe when the filters are applied.

One might expect that small hydrogen-bonding solvent molecules 
in crystals have slightly different properties than their main building 
blocks. This was investigated by filtering out solvent contacts from 
the knowledge-base and assessing results of prediction; however, an 
improvement could not be observed for the map probes used.

In general, accuracy of prediction of ligand moieties by inter-
action maps was observed to be similar or better for corrected and 
filtered CSD data than for PDB data. The only exception is the 
prediction of ligand NH groups, where PDB-data excel. This may 
be a result of the lack of diversity in PDB-data, which may focus 
NH prediction to those specific types of protein–ligand interaction 
that are observed in the knowledge-base; NH interaction data from 
the CSD cover a much broader range of chemical groups.

The contact filters require pre-processing of the knowledge-base. 
The distance-limitation filter does not require such pre-processing 
and can easily be applied during calculation of maps. Although 
the data-selection procedures described here have been applied to 
small-molecule crystal structure data, we have seen evidence that 
the distance-limitation filter improves prediction of interactions 
using PDB data slightly; it may therefore be relevant for other 
knowledge-based approaches, like scoring functions for protein–
ligand docking.

5 Methods
5.1 SuperStar validation

All calculations were performed using SuperStar v1.5 (release date 
mid 2004) and IsoStar v1.5 (released November 2003). Validations 
were carried out using a test set of 224 structures that has been 
published previously.39 This set has been checked for errors and 
diversity. The set contains protein structures and separate ligand 
structures. All protein structures have had hydrogens added and 
their protonation states set; they have been inspected visually.

The validation involved comparing the experimental positions 
of ligand functional groups in binding sites with those predicted by 
SuperStar. This was done by calculating several SuperStar maps 
for each binding site, using different probes. A ligand group was 
deemed to be predicted correctly if it matched the probe which, at 
the experimentally-observed position of the ligand group, had the 
highest propensity of all the probes for which maps were generated. 
Success rates were determined as the percentage of groups that were 
predicted correctly. Only buried15 ligand groups were considered, as 
interactions of groups that are exposed to solvent generally cannot 
be predicted reliably.

The following map probes were used, with the corresponding 
ligand groups in brackets: alcohol oxygen (alcohol groups, ROH); 
carbonyl oxygen (carbonyl groups, RR′CO), uncharged NH 
nitrogen (disubstituted amino groups RR′NH and amino groups 
RNH2), aliphatic CH carbon (aliphatic CH, methyl and methylene 
groups, RR′R″CH), aromatic CH carbon (aromatic CH groups). 
These map probes cover a broad range of hydrogen bonding and 
hydrophobic interactions.

Two success rate were determined (f and f ′ in Table 1). f is the 
rate of exactly correct predictions, i.e. where the observed ligand 
group exactly matches the probe giving rise to the highest SuperStar 
propensity at that point. f ′ is the success rate if we also count as 
successful situations where the probe of highest propensity is not an 
exact match of the ligand group but has similar characteristics (is an 
“appropriate” probe; e.g. if the ligand group were aliphatic CH and 

the probe of highest propensity were aromatic CH). Specifically, 
for hydrophobic groups, a prediction would be deemed correct if 
predicted to be either of the hydrophobic probes; for hydroxyls, 
prediction as carbonyl or NH is deemed correct; for amino groups, 
prediction by OH is deemed correct.

5.2 Hydrophobicity correction and database filtering

The hydrophobicity correction was implemented in SuperStar, and 
is applied automatically after calculation of the raw CSD-based 
SuperStar maps according to eqns. (4) and (5) (-based protocol), or 
according to the original (single correction factor) protocol. For the 
-based protocol, the protein environment of each grid point in the 
map is looked up, and the E contribution is based on the  values 
for one or more nearby protein groups. Contribution X depends on 
the chosen map probe.

Filtering of contacts was performed using in-house software. 
IsoStar scatterplot files were analysed and for each contact group 
the original contact atom-to-central atom pair was retrieved from 
the relevant CSD crystal structure (CSD version 5.23). Atom 
coordinates of the crystal structure were expanded by symmetry 
when needed. For solvent contact filtering, simple heuristics were 
applied to determine whether the contact atom was part of a solvent 
molecule. For secondary-contact filtering, the contact group atom 
and central group were identified and it was then checked whether 
there were any short distances between the contact group atom and 
a third moiety in the crystal. The decision whether the contact under 
investigation should be rejected was made using the distance cut-off 
value filter defined in eqn. (7).

The significance filter was implemented in SuperStar, and S 
(see eqn. (7) and explanation) was set to an empirically-optimised 
value of 0.001; shell values were set for apolar and polar groups 
separately.
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